
International Journal of Management, IT & Engineering
 Vol. 15 Issue 05, May 2025,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

47 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Agentic AI-Based Test Automation
A Strategic Leap Forward for Enterprises

Prasad Banala

 Abstract

 Generative AI is transforming software testing by automating the creation of

diverse and complex test cases, uncovering hidden bugs, and ensuring

comprehensive coverage. AI-driven tools analyze data to predict issues and

suggest improvements, making software more robust and reliable. Unlike

traditional frameworks, generative AI is efficient and cost-effective,

accelerating development and reducing manual testing efforts. Agentic AI,

leveraging Large Language Models (LLMs) like GPT-4 and Gemini, enhances

UI and API testing by framing it as a Q&A task. LLMs generate and refine

testing scripts, improving coverage, bug detection, and speed. They enable

natural language understanding, real-time data analysis, autonomous decision-

making, dynamic planning, and enhanced interaction. Choosing the right LLM

is crucial. Diffusion Large Language Models (dLLMs) like Mercury Coder

offer faster and more efficient text generation, making them practical for

everyday use. This paper explores the potential of Agentic AI for software

quality, highlighting significant improvements in testing effectiveness.

Keywords:

Generative AI, Software

Testing, Large Language

Models, Agentic AI, Test

Automation.

Copyright © 2025 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Prasad Banala,

Technology Transformation Leader - Head of Quality Assurance and Testing services | Performance and Site Reliability

Engineering(SRE) | Cloud Platform Engineering

Cumming, Georgia, United States

Email: prasadsimha@gmail.com

1. Introduction

Generative AI is transforming software testing by automating the creation of diverse and complex test

cases, which helps uncover hidden bugs and vulnerabilities. It can simulate a wide range of user interactions

and scenarios, ensuring comprehensive testing coverage. Additionally, AI-driven tools can analyze vast

amounts of data to predict potential issues and suggest improvements, leading to more robust and reliable

software.

Agentic

Level
Description Who's in Control

What that's

Called
Example Code

★☆☆☆☆
Model has no impact
on program flow

The developer controls all

possible functions a system can

do and when they are done.

Simple processor print_llm_output(llm_response)

★★☆☆☆
Model determines

basic control flow

The developer controls all

possible functions a system can

do; the system controls when to
do each.

Router if llm_decision(): path_a() else: path_b()

★★★☆☆
Model determines
how function is

executed

The developer controls all

possible functions a system can
do and when they are done, the

system controls how they are

done.

Tool call
run_function(llm_chosen_tool,

llm_chosen_args)

★★★★☆
Model controls

iteration and program
continuation

The developer controls high-
level functions a system can do;

the system controls which to

do, when, and how.

Multi-step agent
while llm_should_continue():

execute_next_step()

http://www.ijmra.us/
http://www.ijmra.us/
mailto:prasadsimha@gmail.com

 ISSN: 2249-0558 Impact Factor: 7.119

48 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

★★★★★
Model writes and

executes new code

The developer defines high-

level functions a system can do;

the system controls all possible
functions and when they are

done.

Fully autonomous

agent
create_and_run_code(user_request)

Unlike conventional automation frameworks, which require significant time to build and incur periodic

maintenance costs, generative AI offers a more efficient and cost-effective solution. This not only accelerates

the development process but also significantly reduces the time and resources required for manual testing.

Figure 1. Benefits Agentic AI

2. Research Method (12pt)

Research Model

Agentic AI involves the use of advanced AI models to perform tasks that typically require human intelligence

and decision-making. These AI models, particularly Large Language Models (LLMs) like GPT-4 and

Gemini, are designed to understand and generate human-like text, making them highly effective for various

applications, including software testing.

In the context of software testing, Agentic AI refers to the use of LLMs to automate the creation and

execution of test cases, simulate user interactions, and analyse test results. Here’s a step-by-step overview of

how Agentic AI works in software testing:

Figure 2. Context for Agentic AI

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

49 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Task Framing: The testing task is framed as a Q&A problem, where the LLM acts as a human tester. This

involves defining the test scenarios and requirements in natural language, which the LLM can understand and

process.

Script Generation: The LLM generates testing scripts based on the defined scenarios. These scripts outline

the sequence of actions needed to test the software, including interactions with the user interface (UI) and

application programming interfaces (APIs).

Execution: The generated scripts are executed, with the LLM interacting with the software as a human tester

would. This includes navigating through the UI, making API calls, and performing various actions to test

different functionalities.

Feedback Loop: During execution, the LLM continuously analyses the software’s responses and refines the

testing scripts based on real-time feedback. This iterative process ensures comprehensive coverage and

accurate bug detection.

Data Analysis: The LLM analyses the collected data to identify patterns, predict potential issues, and suggest

improvements. This involves real-time data analysis and autonomous decision-making to enhance the testing

process.

Reporting: Detailed test reports are generated, summarizing the findings, detected bugs, and overall software

performance. These reports provide valuable insights for developers to improve the software quality.

By leveraging the capabilities of LLMs, Agentic AI provides a more efficient, accurate, and comprehensive

testing solution compared to traditional methods. It ensures higher test coverage, faster execution, and better

bug detection, ultimately leading to more robust and reliable software.

How Agentic Automation Works

We model GUI testing as a Q&A problem, where the LLM acts as a human tester interacting with the app.

This approach extracts static and dynamic context from the GUI page, encodes them into prompts for the

LLM, and decodes the LLM's feedback into actionable scripts to execute the app. This iterative process

leverages the LLM's knowledge from large-scale training to explore diverse pages, perform complex actions,

and cover meaningful sequences. Static context includes app and GUI page information, while dynamic

context tracks testing progress to guide operations and avoid duplication

Figure 3. Agentic AI Workflow

Opensource Agentic Test Intelligent Frameworks

To build Agentic AI-based frameworks, we need to design programs that handle the following key steps:

1. Triggering the Suite (1): This involves creating a mechanism for users to initiate the test suite via

command line or an IDE interface. This step ensures that the testing process can be started easily

and efficiently.

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

50 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

2. Executing Test Cases (2,3): We need to develop a system that logically sequences stored test case

prompts and sends them to the Web-UI API Interface for execution using Pytest. This step is crucial

for running the tests in an organized manner.

3. Extracting Results (8): Pydantic scripts must be designed to extract meaningful results from the

reports and knowledge modules. This step involves processing the raw data generated during testing

to produce useful insights and metrics.

4. Creating HTML Reports (9): Finally, we need to generate HTML test reports in the desired

format. This step involves formatting the extracted results into a user-friendly and visually appealing

report that can be easily reviewed and shared.

Figure 4. Agentic Framework Overview

There are multiple packages available in the market today that can manage the intermediate steps:

I. Interacting with LLM (4): Tools like the Browser use library can be used to interact with

the LLM, obtaining action plans and thinking pattern details.

II. Implementing Tests (5,6): Playwright can be used to interact with the browser and

implement the tests based on instructions received from the LLM.

III. Generating Reports (7): Playwright responses can be interpreted to generate detailed

report logs and knowledge, ensuring comprehensive documentation of the testing process.

Category Package Description
GitHub

Link

Mobile

Automation
AutoDroid

Empowers LLMs to use smartphones for intelligent task

automation.
AutoDroid

Browser

Automation
browser-use Makes websites accessible for AI agents. browser-use

Other UI &

API

testzeus-

hercules

World's first open source testing agent, enabling UI,

API, Security, Accessibility, and Visual validations.

testzeus-

hercules

Existing GUI testing tools, such as probability-based or model-based ones, suffer from low testing coverage

for commercial apps due to their complex and dynamic nature. These tools often miss important bugs

because their test inputs differ significantly from real user interactions.

To address these limitations, deep learning (DL) and reinforcement learning (RL) methods have been

explored to generate human-like actions for more effective testing. However, these methods still face

challenges, such as the need for large amounts of training data, poor generalization to new situations, and

difficulties with non-deterministic app behaviors.

http://www.ijmra.us/
https://github.com/MobileLLM/AutoDroid
https://github.com/browser-use/browser-use
https://github.com/test-zeus-ai/testzeus-hercules
https://github.com/test-zeus-ai/testzeus-hercules

 ISSN: 2249-0558 Impact Factor: 7.119

51 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Technique of Collecting the Data

The analysis of collected data is crucial for improving the testing process and ensuring software quality. The

technique of analysing the data involves:

1. Pattern Identification: The LLM analyses the logged data to identify patterns and trends. This

includes detecting recurring issues, common user interactions, and system behaviours.

2. Insight Generation: Based on the identified patterns, the LLM generates insights and suggestions

for improvements. This involves real-time data analysis and autonomous decision-making to

enhance efficiency.

3. Bug Detection: The LLM uses its understanding of the app's GUI to detect bugs and vulnerabilities.

This includes comparing expected outcomes with actual results and identifying discrepancies.

4. Dynamic Planning: The LLM adapts its testing strategy based on the analysis, dynamically

planning and executing further tests to cover new scenarios and interactions.

5. Reporting: Detailed reports are generated, summarizing the findings, detected bugs, and overall

software performance. These reports provide valuable insights for developers to improve the

software quality.

By leveraging the capabilities of LLMs, Agentic AI provides a more efficient, accurate, and comprehensive

testing solution compared to traditional methods. It ensures higher test coverage, faster execution, and better

bug detection, ultimately leading to more robust and reliable software.

Hypothesis

Existing GUI testing tools, such as probability-based or model-based ones, suffer from low testing coverage

for commercial apps due to their complex and dynamic nature. These tools often miss important bugs

because their test inputs differ significantly from real user interactions.

To address these limitations, deep learning (DL) and reinforcement learning (RL) methods have been

explored to generate human-like actions for more effective testing. However, these methods still face

challenges, such as the need for large amounts of training data, poor generalization to new situations, and

difficulties with non-deterministic app behaviours.

Figure 5. LLM Effectiveness

Research Chronological

Research Design:

Current large language models (LLMs) are autoregressive, generating text sequentially, one token at a time,

which leads to high inference costs and latency.

Figure 6. DLLM Efficiency

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

52 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Diffusion Large Language Models (dLLMs) are better because they generate text faster and more efficiently.

Traditional models create one word at a time, which can be slow and costly. In contrast, dLLMs refine their

output in stages, starting from a rough draft and improving it step by step. This method allows them to think

and respond more effectively.

Figure 7. DLLM Performance

For example, while traditional models might generate 200 words per second, dLLMs like Mercury Coder can

produce over 1000 words per second on standard hardware. This means they can provide answers and

complete tasks much quicker, making them more practical and accessible for everyday use.

 Next Steps
1. Implement LLM-Based Frameworks: Integrate LLM-based testing into development processes.

2. Optimize Performance: Continuously evaluate and improve AI testing tools.

3. Ensure Security: Address security concerns and comply with standards.

4. Train Teams: Educate teams on using AI-driven testing tools.

5. Invest in R&D: Explore new AI techniques for better testing.

Generative AI and LLMs are revolutionizing software testing by automating complex test cases, ensuring

comprehensive coverage, and uncovering hidden bugs. Tools like GPT-4 and Gemini enhance testing by

framing it as a Q&A task, significantly improving coverage, bug detection, and speed. Diffusion LLMs

further boost efficiency, making AI-driven testing a game-changer.

Embracing AI-driven testing solutions positions organizations as market leaders, riding the wave of

technological change. This requires a mindset shift to value AI's capabilities and ensure security clearances

and compliance with industry standards. By adopting these tools, companies can stay ahead of competitors,

ensuring top-tier software quality and adaptability to future challenges.

.

References
1. Smith, J., & Brown, L. (2023). Enhancing Software Testing with Agentic AI. International Journal of Artificial

Intelligence and Automation, 42(3), 567-582.

2. Johnson, M., & Lee, K. (2022). Comparative Analysis of Agentic AI and Traditional UI Test Automation. Journal

of Intelligent Systems and Applications, 67(2), 345-360.

3. Wang, H., & Zhang, Y. (2023). Implementing Large Language Models for Efficient Software Testing. IEEE

Transactions on AI and Engineering, 21(1), 123-134.

4. Patel, R., & Kumar, S. (2022). Reducing Regression Cycle Times in Software Systems through Agentic AI.

Journal of Software Engineering and Applications, 16(2), 89-101.

5. Davis, A., & Thompson, P. (2023). Cost-Effectiveness of Agentic AI in Software Testing. International Journal

of Advanced AI Systems, 41(2), 210-225.

http://www.ijmra.us/

