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  Abstract  

 
 Generative AI is transforming software testing by automating the creation of 

diverse and complex test cases, uncovering hidden bugs, and ensuring 

comprehensive coverage. AI-driven tools analyze data to predict issues and 

suggest improvements, making software more robust and reliable. Unlike 

traditional frameworks, generative AI is efficient and cost-effective, 

accelerating development and reducing manual testing efforts. Agentic AI, 

leveraging Large Language Models (LLMs) like GPT-4 and Gemini, enhances 

UI and API testing by framing it as a Q&A task. LLMs generate and refine 

testing scripts, improving coverage, bug detection, and speed. They enable 

natural language understanding, real-time data analysis, autonomous decision-

making, dynamic planning, and enhanced interaction. Choosing the right LLM 

is crucial. Diffusion Large Language Models (dLLMs) like Mercury Coder 

offer faster and more efficient text generation, making them practical for 

everyday use. This paper explores the potential of Agentic AI for software 

quality, highlighting significant improvements in testing effectiveness. 
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1. Introduction  

Generative AI is transforming software testing by automating the creation of diverse and complex test 

cases, which helps uncover hidden bugs and vulnerabilities. It can simulate a wide range of user interactions 

and scenarios, ensuring comprehensive testing coverage. Additionally, AI-driven tools can analyze vast 

amounts of data to predict potential issues and suggest improvements, leading to more robust and reliable 

software.  

 

Agentic 

Level 
Description Who's in Control 

What that's 

Called 
Example Code 

★☆☆☆☆ 
Model has no impact 
on program flow 

The developer controls all 

possible functions a system can 

do and when they are done. 

Simple processor print_llm_output(llm_response) 

★★☆☆☆ 
Model determines 

basic control flow 

The developer controls all 

possible functions a system can 

do; the system controls when to 
do each. 

Router if llm_decision(): path_a() else: path_b() 

★★★☆☆ 
Model determines 
how function is 

executed 

The developer controls all 

possible functions a system can 
do and when they are done, the 

system controls how they are 

done. 

Tool call 
run_function(llm_chosen_tool, 

llm_chosen_args) 

★★★★☆ 
Model controls 

iteration and program 
continuation 

The developer controls high-
level functions a system can do; 

the system controls which to 

do, when, and how. 

Multi-step agent 
while llm_should_continue(): 

execute_next_step() 
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★★★★★ 
Model writes and 

executes new code 

The developer defines high-

level functions a system can do; 

the system controls all possible 
functions and when they are 

done. 

Fully autonomous 

agent 
create_and_run_code(user_request) 

 

Unlike conventional automation frameworks, which require significant time to build and incur periodic 

maintenance costs, generative AI offers a more efficient and cost-effective solution. This not only accelerates 

the development process but also significantly reduces the time and resources required for manual testing. 

 

 
Figure 1. Benefits Agentic AI  

 

2. Research Method (12pt) 

 

Research Model 

Agentic AI involves the use of advanced AI models to perform tasks that typically require human intelligence 

and decision-making. These AI models, particularly Large Language Models (LLMs) like GPT-4 and 

Gemini, are designed to understand and generate human-like text, making them highly effective for various 

applications, including software testing. 

 

In the context of software testing, Agentic AI refers to the use of LLMs to automate the creation and 

execution of test cases, simulate user interactions, and analyse test results. Here’s a step-by-step overview of 

how Agentic AI works in software testing: 

 

 
 

Figure 2. Context for Agentic AI  
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Task Framing: The testing task is framed as a Q&A problem, where the LLM acts as a human tester. This 

involves defining the test scenarios and requirements in natural language, which the LLM can understand and 

process. 

Script Generation: The LLM generates testing scripts based on the defined scenarios. These scripts outline 

the sequence of actions needed to test the software, including interactions with the user interface (UI) and 

application programming interfaces (APIs). 

 

Execution: The generated scripts are executed, with the LLM interacting with the software as a human tester 

would. This includes navigating through the UI, making API calls, and performing various actions to test 

different functionalities. 

 

Feedback Loop: During execution, the LLM continuously analyses the software’s responses and refines the 

testing scripts based on real-time feedback. This iterative process ensures comprehensive coverage and 

accurate bug detection. 

Data Analysis: The LLM analyses the collected data to identify patterns, predict potential issues, and suggest 

improvements. This involves real-time data analysis and autonomous decision-making to enhance the testing 

process. 

 

Reporting: Detailed test reports are generated, summarizing the findings, detected bugs, and overall software 

performance. These reports provide valuable insights for developers to improve the software quality. 

 

By leveraging the capabilities of LLMs, Agentic AI provides a more efficient, accurate, and comprehensive 

testing solution compared to traditional methods. It ensures higher test coverage, faster execution, and better 

bug detection, ultimately leading to more robust and reliable software. 

 

 

How Agentic Automation Works 

We model GUI testing as a Q&A problem, where the LLM acts as a human tester interacting with the app. 

This approach extracts static and dynamic context from the GUI page, encodes them into prompts for the 

LLM, and decodes the LLM's feedback into actionable scripts to execute the app. This iterative process 

leverages the LLM's knowledge from large-scale training to explore diverse pages, perform complex actions, 

and cover meaningful sequences. Static context includes app and GUI page information, while dynamic 

context tracks testing progress to guide operations and avoid duplication 

 

 
Figure 3. Agentic AI Workflow  

 

Opensource Agentic Test Intelligent Frameworks 

To build Agentic AI-based frameworks, we need to design programs that handle the following key steps: 

1. Triggering the Suite (1): This involves creating a mechanism for users to initiate the test suite via 

command line or an IDE interface. This step ensures that the testing process can be started easily 

and efficiently. 
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2. Executing Test Cases (2,3): We need to develop a system that logically sequences stored test case 

prompts and sends them to the Web-UI API Interface for execution using Pytest. This step is crucial 

for running the tests in an organized manner. 

3. Extracting Results (8): Pydantic scripts must be designed to extract meaningful results from the 

reports and knowledge modules. This step involves processing the raw data generated during testing 

to produce useful insights and metrics. 

4. Creating HTML Reports (9): Finally, we need to generate HTML test reports in the desired 

format. This step involves formatting the extracted results into a user-friendly and visually appealing 

report that can be easily reviewed and shared. 

 
 

Figure 4. Agentic Framework Overview 

 

There are multiple packages available in the market today that can manage the intermediate steps: 

I. Interacting with LLM (4): Tools like the Browser use library can be used to interact with 

the LLM, obtaining action plans and thinking pattern details. 

II. Implementing Tests (5,6): Playwright can be used to interact with the browser and 

implement the tests based on instructions received from the LLM. 

III. Generating Reports (7): Playwright responses can be interpreted to generate detailed 

report logs and knowledge, ensuring comprehensive documentation of the testing process. 

Category Package Description 
GitHub 

Link 

Mobile 

Automation 
AutoDroid 

Empowers LLMs to use smartphones for intelligent task 

automation. 
AutoDroid  

Browser 

Automation 
browser-use Makes websites accessible for AI agents. browser-use  

Other UI & 

API 

testzeus-

hercules 

World's first open source testing agent, enabling UI, 

API, Security, Accessibility, and Visual validations. 

testzeus-

hercules  

 

 

Existing GUI testing tools, such as probability-based or model-based ones, suffer from low testing coverage 

for commercial apps due to their complex and dynamic nature. These tools often miss important bugs 

because their test inputs differ significantly from real user interactions.  

To address these limitations, deep learning (DL) and reinforcement learning (RL) methods have been 

explored to generate human-like actions for more effective testing. However, these methods still face 

challenges, such as the need for large amounts of training data, poor generalization to new situations, and 

difficulties with non-deterministic app behaviors. 
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Technique of Collecting the Data 

The analysis of collected data is crucial for improving the testing process and ensuring software quality. The 

technique of analysing the data involves: 

1. Pattern Identification: The LLM analyses the logged data to identify patterns and trends. This 

includes detecting recurring issues, common user interactions, and system behaviours. 

2. Insight Generation: Based on the identified patterns, the LLM generates insights and suggestions 

for improvements. This involves real-time data analysis and autonomous decision-making to 

enhance efficiency. 

3. Bug Detection: The LLM uses its understanding of the app's GUI to detect bugs and vulnerabilities. 

This includes comparing expected outcomes with actual results and identifying discrepancies. 

4. Dynamic Planning: The LLM adapts its testing strategy based on the analysis, dynamically 

planning and executing further tests to cover new scenarios and interactions. 

5. Reporting: Detailed reports are generated, summarizing the findings, detected bugs, and overall 

software performance. These reports provide valuable insights for developers to improve the 

software quality. 

By leveraging the capabilities of LLMs, Agentic AI provides a more efficient, accurate, and comprehensive 

testing solution compared to traditional methods. It ensures higher test coverage, faster execution, and better 

bug detection, ultimately leading to more robust and reliable software. 

 

Hypothesis 

Existing GUI testing tools, such as probability-based or model-based ones, suffer from low testing coverage 

for commercial apps due to their complex and dynamic nature. These tools often miss important bugs 

because their test inputs differ significantly from real user interactions.  

To address these limitations, deep learning (DL) and reinforcement learning (RL) methods have been 

explored to generate human-like actions for more effective testing. However, these methods still face 

challenges, such as the need for large amounts of training data, poor generalization to new situations, and 

difficulties with non-deterministic app behaviours. 

 

 
Figure 5. LLM Effectiveness 

 

Research Chronological 

 

Research Design:  

Current large language models (LLMs) are autoregressive, generating text sequentially, one token at a time, 

which leads to high inference costs and latency.  

 
Figure 6. DLLM Efficiency 
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Diffusion Large Language Models (dLLMs) are better because they generate text faster and more efficiently. 

Traditional models create one word at a time, which can be slow and costly. In contrast, dLLMs refine their 

output in stages, starting from a rough draft and improving it step by step. This method allows them to think 

and respond more effectively. 

 
Figure 7. DLLM Performance 

 

For example, while traditional models might generate 200 words per second, dLLMs like Mercury Coder can 

produce over 1000 words per second on standard hardware. This means they can provide answers and 

complete tasks much quicker, making them more practical and accessible for everyday use. 

 

 Next Steps 
1. Implement LLM-Based Frameworks: Integrate LLM-based testing into development processes. 

2. Optimize Performance: Continuously evaluate and improve AI testing tools. 

3. Ensure Security: Address security concerns and comply with standards. 

4. Train Teams: Educate teams on using AI-driven testing tools. 

5. Invest in R&D: Explore new AI techniques for better testing. 

 

 

Generative AI and LLMs are revolutionizing software testing by automating complex test cases, ensuring 

comprehensive coverage, and uncovering hidden bugs. Tools like GPT-4 and Gemini enhance testing by 

framing it as a Q&A task, significantly improving coverage, bug detection, and speed. Diffusion LLMs 

further boost efficiency, making AI-driven testing a game-changer. 

Embracing AI-driven testing solutions positions organizations as market leaders, riding the wave of 

technological change. This requires a mindset shift to value AI's capabilities and ensure security clearances 

and compliance with industry standards. By adopting these tools, companies can stay ahead of competitors, 

ensuring top-tier software quality and adaptability to future challenges. 

. 
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